MATH 117: OPTIMIZATION

Name:

Bleck:

Find the maximum and minimum values of the objective function given by C = 7x + 3y

(3) (0) (3)

Min (=0 @ (0,0

97 14 A 87 4 100

Max C=

@ (5,0)

Define your variables.

(2) Write all inequalities in order

to graph on Desmos to find

Vertices. Also write cost/revenue equation

A parkade can fit at most 100 cars and trucks on its lot. A car covers 100 sq ft, and a truck 200 sq ft of lot space of 12 000 sq ft. It charges \$20 per car and \$35 per truck to park these vehicles each week. How many of each vehicle will bring in maximum revenue?

policy (= # cars T= # trucky

O C+T=100

0100 C+200T = 12,000

Ø (≥0 (1) T≥ ()

Fertilizer for a lawn comes in 2 brands as follows:

	Brand A (kg per bag)	Brand B (kg per bag)
Nitrogen -	30	20 .
Phosphoric acid	2	4 ·
Potash	1	4.

A lawn needs at least 120 kg nitrogen, at least 16 kg of phosphoric acid, and at least 12 kg of potash. Brand A costs \$22 a bag and brand B \$18 per bag. How many bags of each brand should be used to minimize the cost? What is the minimum cost?

A= # bags of A

Br# bays of B

6 30A+20B= 120

Cost = 22A +18B

@ 2A+4B=16

0 1A+4B=12

9 A = 0

s) B≥0

3) Use graph to answer question

A parkade can fit at most 100 cars and trucks on its lot. A car covers 100 sq ft, and a truck 200 sq ft of lot space of 12 000 sq ft. It charges \$20 per car and \$35 per truck to park these vehicles each week. How many of each vehicle will bring in maximum revenue?

Fertilizer for a lawn comes in 2 brands as follows:

	Brand A (kg per bag)	Brand B (kg per bag)
Nitrogen	30	20
Phosphoric acid	2	4
Potash	1	4

A lawn needs at least 120 kg nitrogen, at least 16 kg of phosphoric acid, and at least 12 kg of potash. Brand A costs \$22 a bag and brand B \$18 per bag. How many bags of each brand should be used to minimize the cost? What is the minimum cost? = 9 \ (2, 3)

M = 22A + 18B

